
𝑒𝑝𝑡𝑘: Energy Prediction Toolkit
Hardik Prabhu
CloudAEye, Inc.

India
hardik.prabhu@gmail.com

Pandarasamy Arjunan
Berkeley Education Alliance for Research in Singapore

(BEARS) Limited
Singapore

samy@bears-berkeley.sg

ABSTRACT
Building energy use prediction plays a crucial role in whole build-
ing energy management. In recent years, with the advent of ad-
vanced metering infrastructures that generate sub-hourly energy
meter readings, data-driven energy prediction models have been
implemented by leveraging advanced machine learning algorithms.
However, the lack of standardization of model development and
evaluation tools hinders the advancement and proliferation of data-
driven energy prediction techniques on a large scale. This paper
presents eptk, an open-source toolkit that enables the seamless de-
velopment of data-driven energy prediction models. The proposed
toolkit helps researchers and practitioners to easily benchmark
the existing and new data-driven models on various open-source
datasets containing time-series of multiple energy meter data along
with relevant metadata. Using the toolkit, we develop and compare
the performance of 34 models on two large datasets containing
more than 3,000 smart meter readings. eptk will be released in
open-source for community use.

CCS CONCEPTS
• General and reference → Evaluation; Metrics; • Computing
methodologies → Cross-validation; Model development and
analysis.

KEYWORDS
Energy prediction, Building energy management, Advanced Meter-
ing Infrastructures, and Machine learning
ACM Reference Format:
Hardik Prabhu and Pandarasamy Arjunan. 2022. 𝑒𝑝𝑡𝑘 : Energy Prediction
Toolkit. In The 9th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation (BuildSys ’22), November 9–10,
2022, Boston, MA, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3563357.3567410

1 INTRODUCTION
In recent years, data-driven energy prediction models have been
extensively studied to improve the operational efficiency of modern
buildings, orthogonal to the traditional physics-based or simulation
models [4, 5]. These data-driven models are reported to be more
efficient because they can map the complex non-linear relation-
ship between a building’s energy use and physical and operational

BuildSys ’22, November 9–10, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in The 9th
ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation (BuildSys ’22), November 9–10, 2022, Boston, MA, USA, https://doi.org/
10.1145/3563357.3567410.

characteristics [3, 6]. Despite the increasing amount of research in
data-driven energy prediction, it is difficult to compare different
models against each other due to the lack of standardized model
development tools [1]. It is also widely acknowledged that the avail-
ability of various open-source software libraries and tools enabled
the development and evaluation of comprehensive models1.

Motivated by the aforementioned challenges and opportunities,
in this paper, we present the design and development of eptk – a
Python package that enables seamless development of large-scale
energy prediction models and benchmarking them on various open
source data sets. eptk provides reusable and extensible modules to
implement various functions such as (i) integration of new and ex-
isting energy meter data sets, weather, and other building metadata
into a standardized format, (ii) data pre-processing modules for
data cleaning and imputation, (iii) a systematic feature engineer-
ing module supporting various temporal and aggregation features,
and (iv) model implementation and validation strategies using dif-
ferent performance measures. The proposed toolkit offers a new
forward-chaining cross-validation technique suitable for energy
time series and post-processing ensembling techniques to combine
the predictions from two or more models. Using the eptk toolkit, we
implemented 34 energy prediction models (17 models each on two
in-built data sets) and compared their performance. eptk is released
in open-source2.

2 ENERGY PREDICTION TOOLKIT
This section presents the architecture and design of the proposed
eptk toolkit. Figure 1 illustrates the workflow of the eptk toolkit
and the interconnection of various modules.

2.1 Datasets and Data converters
The first step of energy prediction model development involves
loading and parsing available energy time series data and other
metadata into a standard format to apply the downstream data
processing and analytical functions. eptk supports Hierarchical Data
Format (HDF5), which is highly flexible for storing and managing
arbitrary metadata for each energy meter time series. Suitable data
converter modules are provided in eptk to convert the energy data
in other formats, such as .csv, into a standard format. In the current
implementation, the eptk toolkit comes with two large datasets:
ASHRAE - Great Energy Predictor III [1] and Building Data Genome
2 (BDG2) [2].

The subpackage eptk.dataset contains a base class for all the
dataset objects. It is an abstract class that standardizes how datasets
are downloaded and loaded. All the dataset object inheriting the

1https://energy.acm.org/resources/
2https://www.eptk.org/

https://orcid.org/0000-0001-5577-4511
https://orcid.org/0000-0002-7697-3576
https://doi.org/10.1145/3563357.3567410
https://doi.org/10.1145/3563357.3567410
https://doi.org/10.1145/3563357.3567410
https://doi.org/10.1145/3563357.3567410

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Hardik Prabhu and Pandarasamy Arjunan

Data loading
eptk.dataset

Data source

Data preprocessing
eptk.preprocessing

Is
preprocessing

required?

Data cleaning
Data imputation

Down/Up sampling

Is feature
engineering

required?

<<Features>>
Temporal, Weather
Aggregation, Cyclic

Feature engineering
eptk.features

Ensembler
(subsampling predictor)

Model selection
eptk.models

eptk.ensemblers

<<Predictors>>
Classical, Ensemble

Neural Networks, Others

Combine
Models

Model evaluation and
benchmarking
eptk.metrics

eptk.evaluation

Is
benchmarking

required?

Metrics
MAE, MAPE, MSE,

MSLE, RMSE, RMSLE

Forward chaining
Cross-validator

Results and
benchmarking report

Building metadata WeatherSmart energy meters

ASHRAE
GEP III

Building Data
Genome 2

yes

yes

yes

no

no

no

Simple evaluator

yes

no

Figure 1: Energy prediction model development using eptk.

base class contains a load method that finally returns a data frame(s)
for the dataset. While loading, the datasets are first downloaded
in the working directory if not found. The data frame returned
at the end has standard naming conventions for each attribute.
The subpackage eptk.dataset aims to allow seamless integration
of a large dataset on which the downstream model development
workflow could be performed.

2.2 Preprocessing
Since data quality is essential to develop robust energy prediction
models, eptk.preprocessing provides a collection of methods for
data cleaning, imputation, and transformation.

2.2.1 Data cleaning. Data cleaning includes detecting and remov-
ing corrupt or inaccurate records from a dataset. The module clean
contains methods such as eliminating missing meter readings, re-
moving meter reading values beneath a threshold, removing con-
stant readings, etc.

2.2.2 Data Imputation. For various reasons, many real-world en-
ergy meter datasets contain missing values. For instance, in the

ASHRAE dataset, the meter readings are recorded periodically, but
theweather data has a lot ofmissing timestamps. To address this, the
imputemodule containsmethods such as add_missing_timestamp
and impute_weather.

Moreover, it is straightforward to include additional data clean-
ing and imputation functions to the eptk.preprocessing subpackage.

2.3 Feature engineering
Feature engineering is a process where we leverage domain knowl-
edge to transform the raw data, giving us a better representation
of the information well suited for the machine learning task. For
example, the temporal features derived from the timestamps alone,
such as the hour of the day, will give a better insight into energy
consumption. The features supported by eptk can be broadly cat-
egorized into the following categories. The package provides a
vast array of feature engineering methods from eptk.features
module.

2.3.1 Temporal features. The eptk package provides methods to
extract some useful temporal features. These are listed below.

(1) Month of the year (Int 1-12)
(2) Day of the week (Int 1-7)
(3) Hour of the day
(4) Year
(5) IsHoliday (Binary 0,1)
(6) Cyclic encoding of the periodic features

The features, such as the day of the week, are periodic. In addition
to assigning each day of the week with an integer value ranging
from 1-7, the package also provides an option to encode the periodic
feature in a cyclic coordinate system. Whereas the feature IsHoliday
expects that the geographical location of the building is passed
along as well. It could be in the form of the country of origin,
longitude-latitude, or site-id, as in the case of the BDG2 dataset.

2.3.2 Weather features. It is well known that weather significantly
impacts building energy use. The BDG2 dataset has weather fea-
tures such as air temperature, dew temperature, and wind speed.
In the presence of these features, the package provides methods to
extract additional weather features such as relative humidity and
temporal and cyclic features.

2.3.3 Aggregated Statistics. The eptk package provides methods to
group the dataset and aggregate different statistics. The methods
are in the form:

function_name(df,feature,group_by,kwargs**)

In order to create the aggregated values for different statistics,
these methods require the data frame (df), feature column as input
(feature), and a string or a list of features to split the dataset into
different groups and other parameters (kwargs**). The statistics
offered are given below.

(1) Min, Max, Percentile
(2) Mean, Median, Standard deviation
(3) Moving statistics over a window
(4) Periodic statistics

𝑒𝑝𝑡𝑘 : Energy Prediction Toolkit BuildSys ’22, November 9–10, 2022, Boston, MA, USA

1 # Imports
2 from eptk.dataset import BDG2
3 from eptk.preprocessing import *
4 from eptk.evaluation import CrossValidation
5 from eptk.metrics import *
6 from eptk.models.ensemble import *
7 # 1. Dataset loading
8 meter , weather , meta = BDG2.load()
9 # 2. Feature engineering
10 weather = add_temporal_features(weather , cyclic = True)
11 weather = include_holidays(weather)
12 dataset = merge_data(meter , weather , meta)
13 dataset = to_numeric(dataset , cat = ["primary_use"])
14 # 3. Prepare data for benchmarking
15 X, y = prepare_data(dataset , drop = ["building_id"])
16 # 4. Benchmarking using forward chaining in time
17 cv = CrossValidation(model= LightGBMPredictor (),
18 metrics = root_mean_squared_log_error ,
19 time_bin_type="month", verbose= True)
20 results = cv.evaluate(X,y)
21 print(results)

Listing 1: Example Python code using eptk toolkit.

2.4 Model development
One of the primary design goals of eptk package is to provide an
extensive collection of different models and ways to combine them
to create powerful predictors and a standardized way to add more
models to the existing collection. The module eptk.models con-
tains various methods for implementing energy prediction models.

2.4.1 eptk.models. All eptk models inherit the base model class
BasePredictor. It is consisting of the abstract methods fit and
predict and additional useful methods such as reset and load_
params. The BasePredictor class is to be inherited while defining
new model classes. The models are divided into 4 categories.

(1) Classical - This includes models such as Linear Regression,
Ridge Regression, Support Vector Regression, etc.

(2) Ensemble - This includes models such as Random Forest,
LightGBM, Catboost, etc.

(3) Neural Networks - This includes models such as Feedforward
Neural Network and 1-D CNN.

(4) Others - This includes models linear Generalized additive
model and Generalized Linear models.

The model classes are designed in a way that one can extend
them to create new model types. In addition, pre-trained models
are also supported.

2.4.2 Ensembling. By producing only a singlemodel over the entire
dataset, getting accurate predictions may become challenging. If we
combine multiple models, the overall accuracy could get boosted.
The eptk package provides classes for developing combined model
predictors. These are child classes of BasePredictor. It allows
the predictor to be identical in terms of usage with the other eptk
models with few added parameters, such as passing a list containing
model objects as one of the inputs. These classes are listed below.

(1) Ensembler: This class enables combining multiple models
over the entire dataset and returning an aggregate model.

(2) SubsamplingPredictor - This class enables creating differ-
ent instances of the same model type over different subsets
of the entire dataset and then returning an aggregate model.

Figure 2: Illustration of forward-chaining cross-validation
for a dataset containing 12 months of data.

The aggregation is done by taking the weighted sum of all the
models.

𝑓combined (𝑥) =𝑊1 ∗ 𝑓model1 (𝑥) +𝑊2 ∗ 𝑓model2 (𝑥) ...+𝑊𝑛 ∗ 𝑓modeln (𝑥)
The weight vector𝑊 = [𝑊1,𝑊2 ...𝑊𝑛] can be set to be uniform,

can be taken as an input from the user and also can be optimized
automatically while training.

For optimizing the weight vector over the training phase, the
training data is split into 2 parts, the models are trained on the
first part and then the weights are assigned based on the weighted
performance on the 2nd part (validation set). Once the weights
are decided, the models are then trained over the complete train-
ing dataset and the weighted linear combination of the models is
returned as the predictor. The package provides 3 different mecha-
nisms for optimizing the weight vector.

(1) Meta Regression: After all the predictors are fitted, the co-
efficients of the ridge regression with no constant for the
regression of the target over the predictions of each individ-
ual model over the validation set is taken as the weights.

(2) Softmax over prediction accuracy: After all the predictors are
fitted, their performance is evaluated over the remaining
validation set. The models are assigned weights based on the
training performance. A numerically stable softmax function
is used to assign weights. The negative of mean square error
is taken as the input for each model weight for the softmax.

(3) Bayesian Optimization: The weights are optimized using
Gaussian process regression. First the black box cost func-
tion over the weight space is created. All the weights are
between 0 and 1. We take negative of mean square error of
the weighted predictions with the actual target values as the
function to maximize. After optimization we get the vector
of weights.

2.5 Evaluation and Benchmarking
The eptk package provides various standard metrics for measur-
ing the model performance and a time-based cross-validation to
benchmark the model performance over the dataset.

2.5.1 Evaluation metrics. The module eptk.metrics offers a vari-
ety of standard evaluation metrics commonly used for comparing
model performance in the energy prediction domain. The metrics
offered are: (a) Mean Squared Error, (b) Root Mean Squared Error, (c)
Mean Absolute Error, (d) Mean Absolute Percentage Error, (e) Mean
Squared Logarithmic Error, and (f) Root Mean Squared Logarithmic
Error.

BuildSys ’22, November 9–10, 2022, Boston, MA, USA Hardik Prabhu and Pandarasamy Arjunan

Table 1: Comparison of performance metrics (lower is better)
of 17 energy predictionmodels on BDG2 dataset (100meters).

S.No. Model RMSLE MAE

1 Random Forest 0.279 2.793
2 Catboost, LightGBM, and HistBoost e 0.319 2.873
3 CatBoost and LightGBM e 0.319 2.873
4 CatBoost 0.319 2.873
5 LightGBM 0.318 2.892
6 Histgradboost 0.320 2.907
7 LightGBM (subsampled) e 0.333 3.562
8 CatBoost, LightGBM, HistGrad & XGBoost e 0.458 3.914
9 Feed Forward Neural Net 0.531 4.199
10 CatBoost (subsampled) e 0.333 4.255
11 XGBoost 0.508 4.255
12 KNN 0.409 4.975
13 Linear Regression 0.802 7.078
14 GLM 0.550 9.363
15 Ridge Regression 1.277 12.714
16 Elastic Net Regression 1.526 19.043
17 Lasso Regression 1.765 23.418

e Weighted average ensembled models

2.5.2 Time-based Cross Validation. Although several open-source
packages, such as scikit-learn, offer implementation for perform-
ing k-fold cross-validation, these implementations split the dataset
randomly into k folds. There is a need for k-fold cross-validation
for time series data to split the dataset into temporal bins such as
months, weeks, etc. Further, the training process should maintain
the chronological order of the train-test split at every iteration. The
package offers an approach more appropriate for energy time series,
known as forward-chaining (See Figure 2).

2.5.3 Benchmarking. A comprehensive evaluation of model per-
formance is essential to develop robust energy prediction models.
To benchmark the performance of one or many models on various
data sets, the package provides a CrossValidation class within
eptk.evaluation module. A CrossValidation object uses the
EPTKCrossValidator to split the data into train and test over a se-
ries of iterations. The CrossValidaton object is to be providedwith
three parameters that govern the splitting process in each iteration.
These are time_bin_type, test_period and min_train_size. A
list of evaluation metrics is also passed as input. Over each iteration,
the model is trained, predictions are made, and values of evaluation
metrics are calculated. In the end, a list containing the aggregated
values for all the metrics over all the iterations is returned. The
time-based cross-validation, used for benchmarking, can resume
evaluation from a stored checkpoint in the event of failure during
runtime. Listing 1 shows an example code to benchmark a model
on the BDG2 dataset using the eptk package.

3 EXPERIMENTS AND RESULTS
We conducted two experiments on the two in-built datasets using
our implementation of eptk package. Since conducting the exper-
iments on these two large datasets with more than 3,000 smart
meter time series is computationally expensive, we randomly se-
lected a subset of meters (100) from each dataset. After applying the

required data cleaning and imputation functions, we prepared the
final datasets with 40 and 42 features from BDG2 and ASHRAE GEP
III. Next, we selected a candidate of 17 models (12 standalone and
5 ensembled) to compare their performance on both datasets. The
comparison of 17 models’ performance using RMSLE and MAE on
the BDG2 dataset is shown in Table 1. The website www.eptk.org
contains additional results. The experimental results show the tree-
based algorithms’ superiority in accurately predicting the meter
readings. The neural network model is hard to configure and thus
performed sub-optimally on default parameters, trained over 50
epochs. The Random Forest model scored the best in the MAE
(2.793) and the RMSLE (0.279) metrics. Models such as GAM, SVR,
and CNN exhausted the computational resources after a few itera-
tions and weren’t included in the table. Ensembling the tree-based
models such as CatBoost, LightGBM, and Histboost performed
marginally better in terms of MAE scores when compared with
each one individually. The classical linear regression models per-
formed poorly compared to the rest and are shown in the last rows.

4 CONCLUSIONS AND FUTUREWORKS
This paper presents the design and development of eptk – a python
package for seamless development and benchmarking of data-
driven energy prediction models. The proposed eptk toolkit offers
reusable and extensible modules to extend the toolkit’s features. The
toolkit facilitates multiple stages of the development of the energy
predictionmodel: preprocessing, feature extraction, model selection,
ensembling, and benchmarking. Using a prototype implementation
of the toolkit, we developed and compared the performance of 34
models across two in-built datasets. In the future, the toolkit will
support additional features such as modules for exploratory data
analysis, data visualization, and more complex energy prediction
models with hyperparameter tuning and AutoML.

ACKNOWLEDGMENTS
This work is supported by the National Research Foundation of
Singapore through a grant (#1645964) for the Singapore-Berkeley
Building Efficiency and Sustainability in the Tropics (SinBerBEST)
program.

REFERENCES
[1] Clayton Miller, Pandarasamy Arjunan, Anjukan Kathirgamanathan, Chun Fu,

Jonathan Roth, June Young Park, Chris Balbach, Krishnan Gowri, Zoltan Nagy,
Anthony D Fontanini, et al. 2020. The ASHRAE great energy predictor III compe-
tition: Overview and results. Science and Technology for the Built Environment 26,
10 (2020), 1427–1447.

[2] Clayton Miller, Anjukan Kathirgamanathan, Bianca Picchetti, Pandarasamy Arju-
nan, June Young Park, Zoltan Nagy, Paul Raftery, Brodie W Hobson, Zixiao Shi,
and Forrest Meggers. 2020. The building data genome project 2, energy meter
data from the ASHRAE great energy predictor III competition. Scientific data 7, 1
(2020), 1–13.

[3] Yue Pan and Limao Zhang. 2020. Data-driven estimation of building energy
consumption with multi-source heterogeneous data. Applied Energy 268 (2020),
114965.

[4] Saleh Seyedzadeh, Farzad Pour Rahimian, Ivan Glesk, and Marc Roper. 2018.
Machine learning for estimation of building energy consumption and performance:
a review. Visualization in Engineering 6, 1 (2018), 1–20.

[5] Zeyu Wang and Ravi S Srinivasan. 2017. A review of artificial intelligence based
building energy use prediction: Contrasting the capabilities of single and ensemble
prediction models. Renewable and Sustainable Energy Reviews 75 (2017), 796–808.

[6] Zeyu Wang, Yueren Wang, Ruochen Zeng, Ravi S Srinivasan, and Sherry
Ahrentzen. 2018. Random Forest based hourly building energy prediction. Energy
and Buildings 171 (2018), 11–25.

www.eptk.org

	Abstract
	1 Introduction
	2 Energy Prediction Toolkit
	2.1 Datasets and Data converters
	2.2 Preprocessing
	2.3 Feature engineering
	2.4 Model development
	2.5 Evaluation and Benchmarking

	3 Experiments and Results
	4 Conclusions and Future works
	Acknowledgments
	References

