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ABSTRACT: Drop size is a crucial parameter for the efficient design
and operation of the rotating disc contactor (RDC) in liquid−liquid
extraction. The current work focuses on providing local and global
explanations for the prediction of the drop size in a rotating disc
contactor (RDC). The Random Forest (RF) regression model is a
robust machine learning algorithm that can accurately capture complex
relationships in the data. However, the interpretability of the model is
limited. In order to address the issue of interpretability of the
developed RF model, in the current work, we employed Local
Interpretable Model-Agnostic Explanations (LIME) of the predictions
of the RF model. This provides both local and global views of the
model and thereby helps one to gain insights into the factors
influencing predictions. We have provided local explanations depicting
the impact of different attributes on the prediction of the output for
any given input example. We have also obtained global feature importance, providing the top subset of informative attributes. We
have also developed local surrogate models incorporating second order attribute interactions. This has provided important
information about the effect of interactions on the drop size prediction. By augmenting the random forest model with LIME, it is
possible to develop a more accurate and interpretable model for estimating the drop size in RDCs, ultimately leading to improved
performance and efficiency.

1. INTRODUCTION
Estimating the drop size in a rotating disc contactor (RDC) is
central to its design and efficient operation. An RDC is
commonly employed in the liquid−liquid extraction process. A
typical construction of an RDC consists of a rotating disc and a
stator disc placed at a regular distance along a cylindrical
column. Liquids that are essentially immiscible in nature are
pumped into the RDC.1 A swirl flow is created in the RDC by
the combined action of the rotating discs and stator discs. This
results in the shearing of the dispersed phase fluid into droplets
and facilitates mass and heat transport between the dispersed
and the continuous phase.
In our previous work,2 empirical correlations for the

estimation of drop size were evaluated. Further, a machine
learning model based on the random forest was developed.
The results of our previous work2 demonstrated that the model
achieved considerable accuracy in estimating drop size in the
RDC system. Building upon this foundation, our current work
aims to enhance the random forest model by introducing an
explainability technique, allowing us to gain deeper insights
into the factors that influence drop size prediction. By

combining the accuracy of the random forest model with
improved interpretability, this work shall pave the way for
further optimization of RDC design and its performance.
The remaining sections of the paper are structured as

follows: In Section 2, the need for explainable machine
learning models and the concept of explainability in machine
learning are introduced by illustrating examples of prior work
in the field. Further, the lacuna in terms of dearth of research
work in process engineering involving explainable AI models is
highlighted. This is followed by a brief overview of existing
works on drop size prediction in an RDC, and the scope of the
current work is presented in section 2. The subsequent section
(Section 3) presents a comprehensive overview of various
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aspects related to model interpretability using a local surrogate
model, description of LIME, and chosen explanation method-
ology in this work. Section 4 presents the data set used in this
work and the experimental simulation setup employed in our
current study. The results of our experiment are presented in
Section 5, followed by the conclusion of our work in Section 6.

2. EXPLAINABLE AI MODEL FOR DROP SIZE
ESTIMATION IN AN RDC

2.1. Need for Explainable Machine Learning Models.
The need for explainable machine learning models arises from
the growing importance of transparency and trust in the
decision-making process of artificial intelligence systems. As AI
applications become more prevalent in various industries,
including chemical engineering, it becomes crucial to under-
stand and interpret the rationale behind the decisions made by
these models. There is often a desire to have simple models
that perform well on a given task. Simple models are
advantageous because they are easier to understand, interpret,
and implement. They often have fewer parameters, making
them computationally efficient. However, as the complexity of
the task increases, simple models may struggle to capture the
intricate patterns and relationships present in the data.
Complex problems often require models with a higher capacity
and flexibility to learn and represent the underlying complex-
ities accurately. In such cases, simple models may fail to
achieve the desired level of performance and may be
outperformed by more complex models. There exists a trade-
off between model complexity and interpretability. Highly
complex models, such as deep neural networks, random forest,
and support vector machines, often exhibit superior perform-
ance but lack transparency. On the other hand, interpretable
models, like decision trees or linear regression, provide clear
explanations but may sacrifice accuracy. Explainable AI aims to
provide insights into how any given model, whether trans-
parent or black-box, arrives at its conclusions, making it easier
for humans to comprehend, validate, and correct the
outcomes.

2.2. Previous Work on Explainable Machine Learning
Models. 2.2.1. Explainability. Explainability refers to the
ability to understand how and why a particular outcome was
arrived at by a machine learning model. It can provide a visual
and quantitative/qualitative explanation of factors involved in
predictions for individual instances. It involves understanding
the biases and errors in the model’s logic. It facilitates the users
(who may or may not be well versed with modeling concepts
and procedures) a clear and concise understanding of the
outcomes. The issue of explainability in AI and ML gained
momentum with the development of complex models. These
black-box models, though accurate, provided very little insights
into the working of these models. The review by Burkhart and
Huber3 explores the principles and methodologies of explain-
able Supervised Machine Learning (SML) and provides key
definitions. It reviews recent approaches to explainable SML
and classifies them based on the introduced definitions. The
review by Vilone and Longo4 categorizes theories related to
the concept of explainability and the evaluation approaches for
eXplainable Artificial Intelligence (XAI) methods. The review
also critically examined the gaps and limitations and proposes
future research directions. Explainability methods can be
broadly categorized into intrinsic and posthoc approaches.
Intrinsic methods, also known as transparent or interpretable
models, are models that are inherently interpretable and have

understandable decision-making mechanisms. Decision trees,
linear regression, and logistic regression are examples of ante-
hoc models. On the other hand, posthoc methods involve
interpreting the predictions of a black-box model without
modifying the model itself. These methods can be further
classified into model-agnostic and model-specific methods.
Model-agnostic methods, such as LIME5 (Local Interpretable
Model-Agnostic Explanations) and SHAP6 (SHapley Additive
exPlanations), can be applied to any black-box model and are
not dependent on the architecture of the model. Model-
specific methods, such as activation maximization and saliency
maps, are designed specifically for certain types of models such
as convolutional neural networks.

2.2.2. Model-Agnostic Methods. SHAP6 (SHapley Additive
exPlanations) is a model-agnostic method used for explain-
ability. It assigns each feature in the input data a Shapley value
that measures its contribution to the prediction. SHAP has
been used in various applications, such as in predicting
mortality risk in patients with sepsis and predicting energy
consumption in buildings. Liu and Aldrich7 employed SHAP
for explaining anomalies in coal processing data. Younisse et
al.8 provided Shap explanations for anomaly detection. Togo et
al.9 provided an Explainable framework for toxicity prediction.
Jang et al.10 augmented Fault Diagnosis of Industrial Processes
modeling with SHAP explanations. Fatahi et.al.11 provided
details of effects of cement rotary kiln variables with Shapley
Value explanations.
LIME5 (Local Interpretable Model-Agnostic Explanations)

is another popular model-agnostic method used to explain
black-box models. It works by generating local interpretable
models around a specific instance to approximate the behavior
of the black-box model in that locality. It was developed by
Ribero et al.5 and has become very popular in prediction of
complex machine learning models. Nguyen et al.12 employed
LIME for Prediction of Parkinson’s Disease Depression.
Mardaoui et al.13 provided an analysis based on LIME for
interpreting text data. Çiçek et al.14 provided a lucid account of
application of LIME for detection of risk factors of PCOS
patients. Jain et al.15 explained sentiment analysis results on
social media texts through visualization. Thus, LIME has been
used to provide in-depth insight into black-box model
predictions.
Sensitivity analysis is a valuable technique used in various

domains to understand the behavior of a model and the impact
of input variables on its output. It helps quantify the sensitivity
of the model to changes in the input variables and provides
insights into the relative importance of those variables.
Sensitivity analysis can be performed at both the global and
local levels, each serving different purposes. Typically, local and
global sensitivity analyses are treated as separate endeavors. In
recent years, global sensitivity analysis has gained significant
popularity and recognition in various fields and disciplines. For
example, global sensitivity analysis employing Monte Carlo
simulations has been performed previously.16 These methods
accurately provide global feature importance. This is done by
gauging the extent of variance of variables for local changes in
the input features. Recently Inapkurti et al.17 successfully
employed Monte Carlo based global sensitivity analysis in their
deep learning-based prediction of particulate matter in air.
Techniques such as LIME on the other hand are designed to
explain individual predictions at a local level, providing insights
into the factors influencing specific instances. Furthermore,
LIME extends its interpretability beyond the local level by
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aggregating the feature importance measures to derive a global
perspective. LIME stands out by offering the flexibility to
provide both local and global perspectives, thereby enhancing
its applicability to interpreting model predictions.

2.3. Lack of Explainable Models in Process Engineer-
ing. Rigorous machine learning and deep learning approaches
have been employed in chemical and process engineering and
multiphase flow system applications for building accurate
prediction models.18−22 In most of these approaches, explain-
ability and interpretability aspects have not been addressed.
Owing to the increasing importance of eXplainable Artificial
Intelligence (XAI), it may be useful to employ explainability
for interpretation of rigorously derived black-box approaches.
This work is a step in that direction. As we had explained in the
Introduction, we have attempted to provide explanations to
our earlier work, which deals with the prediction of drop size in
an RDC.

2.4. Brief Overview of Existing Works on Drop Size
Prediction in an RDC. Drop size and phase holdup are
critical hydrodynamic parameters that influence the transport
parameters such as mass and heat transport coefficients and
thus influence the performance of the RDC. Drop size governs
the interfacial surface area that is available for mass and heat
transport across the phases in a multiphase system. The smaller
the drop size, the greater the interfacial surface area per unit
volume and, hence, the greater the rate of mass and heat
transport. Hence, a reliable estimation of the drop size is
significant in the design and operation of the RDC.
In our previous work,2 we consolidated the available data

points on dispersed phase holdup and drop size in the RDC
from available literature sources. A partial list of sources for
experimental data on the RDC includes Ghalehchian,23 Ismail
Al-Rahawi,24 Korchinsky,25 and Olney.26 In the reported
experimental work,23−26 the drop size denotes the average
drop size expressed as volume surface mean diameter or called
the Sauter mean diameter. Further, ten empirical correlations
available in the literature for the estimation of drop size in the
RDC were consolidated. For instance, Ismail Al-Rahawi24 has
performed experiments using a Toluene-Water system with
acetone as solute and reported the average drop size or Sauter
mean diameter under varied conditions. Further, Ismail Al-
Rahawi24 has proposed empirical correlation for the estimation
of the mean drop size. Since, we have not generated any new
data in our work, we have adopted the definition of the drop
size as per the available literature. More comprehensive
information on the experimental data and the empirical
correlations is made available as Supporting Information in
our previous work2 and is not reproduced here for the sake of
brevity. The Supporting Information can be accessed at
https://pubs.acs.org/doi/10.1021/acs.iecr.0c04149
We evaluated the empirical correlations for the estimation of

the drop size. The prediction efficacy was evaluated by
computing the average absolute relative error (AARE) values.
The AARE was higher than 50% for most data points. Hence,
none of the compiled literature correlations served as reliable
correlations for the estimation of drop size. The empirical
correlations and the AARE values can be found in the
Supporting Information of our previous work.2

The random forest model with a 5-fold cross-validation was
developed as part of our previous work.2 Machine learning
models have been widely employed in chemical engineering for
estimation of bubble size and holdup in a bubble column, flow
regime identification, estimation of mass transport coefficient,

etc.20−22 Notwithstanding, prior to our previous work, we
could not find any reports of machine learning based models
for drop size estimation in an RDC. In our earlier work, prior
to development of the random forest model, the linear
regression model was also developed with stepwise regression
for feature selection. However, it was observed that the linear
regression model gave a poor prediction performance as R2

and AARE for the test set were found to be 0.6230 and
27.21%, respectively.2 The random forest model based on
random forest models with top features was developed. The
prediction performance of the random forest for a test drop
size data set was found to be R2 = 0.8725 and AARE =
15.7946%. For a further description of the model and the
results, one can refer to our earlier work2 which is not
reproduced here for the sake of brevity.

2.5. Scope of Current Work. Random forest27 (RF) and
other robust and rigorous machine learning algorithms can
capture complex relationships in the data and provide accurate
predictions. However, the interpretability of the model is often
limited, making it difficult to understand the factors that
influence the predictions. There is a need to unbox the black-
box model by employing explainable model paradigms. Hence,
in our current work, we employed Local Interpretable Model-
Agnostic Explanations5 (LIME) along with the RF model to
address the issue of interpretability of the RF model previously
developed by us.2 The LIME with RF provides both local and
global views of the model and thereby helps to gain insights
into the factors influencing predictions.

3. EXPLANATION METHODOLOGY EMPLOYED
In this section, we provide a comprehensive overview of
various aspects related to model interpretability using a local
surrogate model. We start with an introduction to the random
forest algorithm and discuss its relevance as a black-box model.
Then we introduce LIME (local interpretable model-agnostic
explanations) and explain its significance in generating
explanations for complex models. Section 3.3 explores the
scope of explanation, focusing on both global and local
interpretability. Section 3.4 delves into the details of fitting a
local linear surrogate model using LIME, while section 3.4
presents local explanations derived from this model. Section
3.5 investigates the relationship between adherence and
stability of the LIME explanations in relation to locality. In
Section 3.6, we discuss global explanations, and in section 3.7,
we introduce second-order feature interactions within the local
model in order to capture feature interaction effects on the
random forest model predictions.

3.1. Random Forest: Choice of the Black-Box Model.
Random forest27 regression is a powerful and flexible black-box
model. Its ability to handle nonlinear relationships, interactions
between features, and noisy data makes it a popular choice
among machine learning practitioners.28,29 Random forest is an
ensemble learning method that evolved from decision trees.
Decision tree regression works by recursively partitioning the
input space into regions, followed by assigning a constant value
to each region based on the average or median value of the
target variable in that region. One of the main limitations of
decision tree regression is its tendency to overfit the data.
Decision trees have a high variance, which means that they are
sensitive to small changes in the data and can easily overfit.
Bagging (Bootstrap Aggregating) is an ensemble learning
technique that reduces variance in machine learning mod-
els.30,31 It builds multiple models on multiple samples
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randomly drawn with a replacement from the training set. By
averaging the predictions of all models, the random variations
in each individual model are smoothed out. The random forest
model further decreases the variance by combining multiple
decision trees using bagging and by introducing randomness
into the tree-building process. This is done by randomly
selecting a subset of all of the available attributes to partition
the data on a given node. Random forest black-box models
have been interpreted by using explainability techniques in
different fields. Liu and Aldrich7 proposed a general anomaly
detection and explanation method based on random forest and
isolation forest with treeSHAP. The case studies are related to
composition of coal and contain five, six, and twenty-two input
attributes. Ribeiro et al.5 have explained random forest and
neural networks using LIME for text and image classification,
respectively.

3.2. LIME. Local Interpretable Model-Agnostic Explan-
ations5 (LIME) provides an interpretable understanding of
how a model is making predictions by approximating the
complex black-box model with a simple interpretable surrogate
model in the vicinity of the point of interest. Linear Regression
is a popular choice for the local surrogate model. This is
because the coefficients in a linear regression model directly
represent the effect of each feature on the predicted outcome.
The local model may not be fitted in the same feature space.
For example, in the case of image data, the image is first
partitioned into a collection of d superpixels. The image x is
transformed into x′ ∈ {0,1}d. A local model is then fitted in
{0,1}d, a binary space of interpretable components. In the
current work, tabular data consisting of numerical features is
considered. The implementation is less complex when
compared to unstructured data such as images. In the case
of tabular data, no such transformation is required.

3.2.1. Scope of the Explanation. Local explanations refer to
an explanation of a single prediction made by the model. In
this approach, LIME generates a linear surrogate model that
approximates the behavior of the original model in the vicinity
of the instance to be explained. This approximated model is
then used to generate feature importance values for local
explanation. The usefulness of the generated LIME values is
illustrated in detail in section 3.4.
Global explanations, on the other hand, refer to an

explanation of the overall behavior of the model. In this
approach, LIME generates a set of local explanations for a set
of instances, and then an analysis of the feature importance
values across all the instances in the set is done to understand
the global behavior of the model. The usefulness of the
generated LIME values is illustrated in detail in section 3.6.

3.3. Fitting a Local Model. According to the methodology
provided in the LIME,5 the following steps are undertaken to
fit a local surrogate model (fl) for any given black-box model
(fb) around a data instance x.

1. Sample a set (S) of M points by performing
perturbations on x, S = {s1,s2,s3...sM}.

2. Based on the proximity to the instance x, give weights W
to all the instances in the generated sample. W =
{πx(s1),πx(s2)...πx(sM)}, where Wi = πx(si) is the weight
assigned to the instance si by using function πx. The
closer a point is to the instance x, the higher the weight
it gets.

3. Fit a surrogate model fl on the sample S by first using the
trained black-box model predictions on S as the target

variable, fb (S) = {fb(s1),fb(s2)...fb(sM)}. Then using a
weighted loss function train the surrogate model; the
weights for all the sample point are given by W. The
weighted loss function assigns higher weights to the
sampled points that are closer to the instance x. This is
because these points are likely to be more representative
of the local behavior of the black-box model in the
vicinity of x, and therefore, the local model should be
better at approximating the black-box model in this
region. For additional details, refer to section 3.3.1. The
weighted mean square error (eq 2) has been used as the
loss function to train the local surrogate model in the
LIME python package. We are using the python package
for our implementations. The code can be found at
https://github.com/marcotcr/lime.

3.3.1. Implementation Details. Let x ∈ Rn be a data
instance for which the black-box model prediction is fb(x). A
Gaussian distribution is used for generating a neighborhood S
around x (eq 1). The distribution mean is x itself, and the
covariance matrix Σ is a diagonal matrix consisting of the
variance along each feature. The training data could be used to
estimate the variance.

(1)

Not all the points in the generated neighborhood are equally
important. As LIME operates under the assumption that for a
small enough locality the black-box model is approximately
linear, it is important to understand that as we move closer in
the generated neighborhood to x, the tighter the fit of the local
surrogate model to the black-box model. This is captured by a
weighted loss function to train the linear model. The fit of the
local model to the black-box model is measured by taking the
weighted mean square error between the local model (fl)
predictions and the black-box model (fb) predictions over the
generated neighborhood S (eq 2).

(2)

An exponential kernel with the parameter kernel width (k) is
applied over the Euclidean distance (D) between a sampled
point (si) and the instance x to generate the weight given to
the sampled point (eq 3). The closer the point is to x, the
higher its weight.

(3)

Weighted Ridge regression is used as the local linear model
in the LIME package. Ridge regression adds a penalty term to
the linear regression cost function, which helps to prevent
overfitting by shrinking the coefficients of the regression model
toward zero. The cost function used for training the model is
given below (eq 4)

(4)

where θ = [θ1,θ2...θn]T represents the feature coefficients of the
local model, and λ is the regularization parameter. The local
linear model is given below (eq 5).

(5)
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In sections 3.4 and 3.6, we will see how the locally fitted
linear model helps to explain the black-box model predictions.

3.4. Local Explanations. LIME can be used to get both
the local and global view of a black-box model’s behavior,
making it a powerful tool for understanding complex machine
learning models. Once the black-box model is trained, its
predictions made on the test data set could be explained by
LIME. At the local level, LIME explains the prediction of a
specific test instance by generating an interpretable local model
around that instance. In section 3.3, ridge regression was
selected as the local interpretable model. The outcome of the
linear model is a linear combination of the feature values (eq
5). The importance of each feature can be quantified by
examining the coefficients of the linear model. They indicate
the direction and magnitude of the effects that each feature has
on the prediction. As the local model is a good approximation
of the black-box model around the instance, the larger the
magnitude of a coefficient, the more important the
corresponding feature is to the black-box model’s prediction.
Figure 1 illustrates the process of getting an explanation for the
black-box model prediction on instance x. Instance x and the
black-box model prediction on it are taken as inputs along with
other inputs which are described in Algorithm 1. A bar plot
created using the coefficients (LIME values) of the local linear
model is returned.
As mentioned earlier, random forest regression is the

complex black-box model used for making predictions. In
order to generate an explanation for its prediction on a given
instance, the following choices are made. The Gaussian
distribution with the instance is to be explained as the mean,
and the training data standard deviation is used to generate a
sample around the instance. Note that the exponential kernel
only considers the Euclidean distance; therefore, the training
data mean and the standard deviation is used to scale
(transform) the sampled data, and then the weighted local
model is fitted in the transformed space while the original

sampled data is used to get the black-box model predictions
which are used as the target values to fit the local linear model.
It also makes sense to have all of the features on an equal scale
considering that the local model coefficients are taken as the
LIME values. LIME also allows an additional feature selection
step. It is done before fitting the local model to the sample
generated around the instance to be explained. This is done to
make the explanations compact and human-readable. The
number of features to be selected (m) is decided by the user of
the LIME package. A Lasso regression model is first fitted, and
only the top m features are selected. The local model is then
fitted by considering only the selected features. We have
decided to keep all of the features as the number of total
features is already small. Algorithm 1 summarizes the steps
undertaken to explain the single instance.

3.5. Adherence and Stability Relationship with the
Locality. The concept of locality is crucial to LIME. The
kernel width controls the size of the locality within the
generated neighborhood, which consists of only the signifi-
cantly weighted points, which may influence the local surrogate
model (eq 3). If the locality of significant points around the
point of interest is too large, it may cause the LIME model to
not adhere to the black-box model in the considered locality.
The kernel width is the hyper-parameter which governs the
size of the locality. As we move away from the instance of
interest, the weights assigned to the generated points decay at a
higher rate if the kernel width is small. This can be seen in the

Figure 1. LIME explanation for the black-box model prediction made on instance x.
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Figure 2. The black-box model is shown with a blue line. The
green point is the instance of interest. A neighborhood of
points is generated around the instance of interest using a
Gaussian distribution.
The generated points are colored red and have sizes

proportional to the weights assigned to them. The weights
are assigned to the neighborhood points by using two different
kernel widths. The left subfigure (Figure 2a) uses a smaller
kernel width of k = 0.5 compared to the right subfigure (Figure
2b) which uses a kernel width of k = 1.5. As a result, the
locality of relevant points in the left subfigure is smaller than
that in the right subfigure. A weighted linear regression is then
fitted on the neighborhood data. As seen from the figure, the
smaller the locality, the tighter the fit, and the lower the error
between the black-box model and the local surrogate model at
x.
Stability of the LIME explanation also depends on the

locality. In order to fit a local model around an instance to be
explained, first a random sample of perturbed data points is
generated. If LIME is implemented to explain the same
instance multiple times, every implementation of LIME will
result in the fitting of a local model with a different generated
sample. This may lead to slightly different values of the local
model coefficients. This slight variation is tolerable if the
explanations do not drastically change each time. Kernel width

and stability are expected to be directly proportional.32 One
quick way to see this is to select an instance and a kernel width
and perform repeated LIME calls in order to explain the same
instance and observe the spread of coefficient values assigned
to each feature by the local model with the help of a box plot.
In Figure 3, this effect is demonstrated on a randomly chosen
test instance from our data set. Two different kernel widths are
used to plot the subfigures in Figure 3. The value of k used for
the left subfigure (Figure 3a) is 0.5, while the right subfigure
(Figure 3b) uses a kernel width of 1.5. The x-axis consists of
the 13 features (f0-f12). The y-axis represents the spread of
value assigned to the coefficients across the repeated LIME
calls. It can be observed that for the higher value of kernel
width (Figure 3b), the variability decreases.
This issue of stability has been studied extensively in the

work of Visani et al.33 The authors have come up with two
complementary indices to measure the stability for the
repeated LIME calls, provided the local model considered is
ridge regression. The Variables Stability Index (VSI) is used to
measure whether the same set of features is selected in the
feature selection step prior to fitting the local model. The
coefficients stability index (CSI) is used to measure whether
the coefficients attributed to the same feature can be
considered equal. As the feature selection step has been
skipped, only the CSI is used for quantifying stability. A high

Figure 2. Effect of the kernel size on the local predictor.

Figure 3. Box plots for coefficients of the local surrogate model for repeated LIME calls made to explain a single instance with different kernel
widths.
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CSI score indicates that the coefficients attributed to the same
feature are consistent and stable across all of the samples
generated for repeated LIME calls. The code used for
calculation of the CSI value for any given instance is available
at https://github.com/giorgiovisani/LIME_stability. The use
of adherence and stability measurements for tweaking the
kernel width is discussed in section 4.

3.6. Global Explanations. The explanation provided at
the global level describes which features are generally
important to the black-box model. We are primarily interested
in understanding the behavior of the model on the data coming
from the data distribution. To estimate the global behavior of
the model, a sufficiently large data set which is representative
of the data distribution should be considered. In order to
perform an analysis on the global level, first, a LIME coefficient
matrix is created. It is done by performing LIME calls on all
the instances in the data set and storing the coefficients
corresponding to all the features in a matrix with the same
number of columns as features and rows as instances. For
obtaining the coefficient matrix, refer to Algorithm 2 described
below.

The coefficient matrix could be used to directly calculate the
relevance of a feature on a global scale. It is done for each of
the features (columns) by calculating the mean of the absolute
values of the column corresponding to the feature. For a

feature, the trend in the LIME coefficient values could also be
observed by plotting the values that a feature takes across the
entire data set against the LIME coefficient values assigned to
it. Figure 4 gives an illustration of the entire process.

3.7. Capturing Feature Interactions. Black-box models
may capture feature interactions while making predictions,
which may not be immediately apparent while exploring the
data. A drawback of using a linear local surrogate model is that
it assumes a linear relationship between the dependent variable
and the independent variables, and therefore, they cannot
directly express the captured feature interactions of the black-
box model. However, it is possible to include interaction terms
in the local linear model to express these interaction effects. An
interaction term is a new variable that is created by multiplying
two or more independent variables together. We propose to
include second-order interaction variables in our local
surrogate model (fl) so that we could express the captured
feature interaction of the black-box model locally (eq 6).

(6)

In our implementation, the weighted ridge regression
penalty still applies, and the weights are calculated the same
way as before. An additional feature engineering step is
included before fitting the linear model. It modifies the input
data set by including all the second order interaction features
in the input data set. It is done by elementwise multiplying two
columns together at a time. The total number of features
including interactions increases by O(n2) where n is the
number of features in the original data set. In order to keep the
explanation compact, a feature selection step may also be
employed on the modified data set before fitting the final
model; this optional step is already present in LIME. The
implementation is given in Algorithm 3.

Figure 4. Global explanation of the black-box model predictions on a data set.
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Another benefit of adding second-order interactions to the
local surrogate model is that it allows for a more accurate
representation of the relationships between the input features
and the output variable. Second-order interactions can capture
nonlinear relationships between input features that are not
captured by a linear model that includes only first-order
features.

4. DATA SET AND EXPERIMENTAL SETUP FOR
SIMULATIONS

4.1. Data Set. In the current work, we have used the same
data set compiled in our earlier work2 and made available at
10.7910/DVN/HMNWIC.2 Water was used as the continuous
phase liquid in most of the studies. However, the dispersed
phase fluid employed in an RDC varied in nature. We
employed the DBSCAN algorithm for removing outliers from
the data set. DBSCAN identifies three types of points including
the outliers in the data set. Core points are those that have a
sufficient number of neighboring points. Border points are
those that are not core points but have at least one core point
in their neighborhood. Outliers are points that are not core
points and do not have any core points in their neighborhood.
Outliers are located in regions of low point density. After
removal of outliers, 572 drop size data points were used as the
input data set for the work. Each data point is uniquely

described by 13 features: Dispersed Phase Density, Con-
tinuous Phase Density, Dispersed Phase Viscosity, Continuous
Phase Viscosity, Interfacial tension, Diameter of the column,
Height of the column, Compartment height, Diameter of the
rotor disc, Diameter of the stator, Rotor speed, Dispersed
Phase Velocity, and Continuous Phase Velocity. Dispersed
phase droplet size is the output or target variable. The
dispersed phase drop size denotes the mean drop size reported
as the volume average diameter or the Sauter mean diameter,
in line with the experimental studies.

4.2. Experimental Setup for Simulations. In section 3,
we saw how LIME could be used to explain black-box model
predictions, making it more interpretable. Our objective is to
show the following: 1. The random forest model can accurately
estimate the drop size in our data set. 2. Utilize LIME to
explain the random forest model both locally and globally, as
well as discover how feature interactions affect model
predictions. The entire end to end experiment could be
summarized in 5 steps (refer to Figure 5 for an illustration).

Step 1 (Data Processing). The data set containing 572 rows
is first randomly split into a train and test data set using an
80:20 split. The train data set has 457 rows, and the test data
set has 115 rows.

Step 2 (Train Model). The random forest model with a
default set of hyper-parameters provided in the scikit-learn
python package is selected as the black-box model. It is trained
on the train data set.

Step 3 (Model Evaluation). The trained model is used to
predict the drop size for the test data set. The predictions are
compared with the actual target values using metrics R2 and
MAE.

Step 4 (Model Interpretation Using LIME). 4.1. LIME
Parameter Tuning: The parameter kernel width (k) is tuned by
taking a grid of several values; the best value is found by

Figure 5. Flowchart for the steps undertaken in the experiment.
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analyzing the adherence and stability of the local models on a
data set of points. For a fixed kernel width, the stability of the
local models over the data set is calculated by first measuring
the coefficients stability index (CSI) of all the LIME calls on
each of the instances in the data set. Section 3 contains details
regarding the stability index and how it could be calculated.
Then the average CSI value is calculated. And for adherence,
the black-box model predictions are calculated over the entire
data set. Then a set of predictions is made by using the local
model of each of the instances to predict its drop size. Then
the R2 score is calculated between the black-box model
predictions and the set of predictions. This process is repeated
for all the different values of kernel width (k), and then an
optimum kernel width is selected after analyzing the R2 and
avg CSI scores.
4.2. LIME Explanations: LIME could be used to locally

explain one particular test instance, or it could be used to
understand the overall behavior of the black-box model with
respect to all the features over a data set. Algorithm 1 is used
for explaining a single instance. In order to understand the
model globally, a matrix of feature coefficients of each of the
local models (one model per test instance) is created, as shown
in Algorithm 2. In order to understand the feature interaction
in the model predictions, Algorithm 3 is used. The LIME
python package is used for the implementation. For Algorithm
3, we made some modifications to the existing LIME package.

5. RESULTS AND DISCUSSION
The random forest regression model is fitted in order to
predict the target variable for our data set. We did not perform
any hyper-parameter tuning and used the default hyper-
parameters for the model provided in the scikit-learn python
package. Several excellent papers in process engineer literature
deal with hyper-parameter optimization. These include the
following: (i) robust optimization of computationally ex-
pensive networks employ rigorous cross-validation method-
ology for hyperparameter tuning34 and (ii) multiobjective
optimization of cascaded mixed-suspension mixed-product
removal crystallizers.35 In the current work, the data set is
randomly split into a training set and a testing set using an 80−
20 split. We use R-squared (R2) and Mean Absolute Error
(MAE) as evaluation metrics to assess the performance of our
model on the test set (Table 1). Predictions made by the
model are explained by using LIME.

5.1. LIME Hyper-Parameter Tuning. Kernel width is the
most important hyper-parameter to tune. It determines the size
of the locality around an instance, which influences the
weighted local linear model to explain the behavior of a black-
box model. The default value of this hyperparameter is 0.75 ×
√ (number of features) in the LIME python package. The test
data set is used for tuning the hyper-parameter.
For a selected value of kernel width, the CSI values for all

the instances in the test data set are calculated, and then the
average CSI value over all the instances is returned. A grid of
kernel width (k) values is taken starting at 0.5, and the
corresponding avg CSI and R2 values are plotted in Figure 6.

The CSI index is defined to be between 0 and 100 but has
been scaled between 0 and 1. The details of computation of the
CSI and R2 values are provided in section 4.

Figure 6 illustrates the effects of taking different k values. It
is seen that there exists a trade-off between adherence and
stability for a k value ≥ 0.5. The selected k value is 0.9. This is
appropriate considering we are trying to maximize both
stability and adherence. The selected value is used for the
computations.

5.2. LIME Explanations. By providing both local and
global explanations, LIME can help users understand how a
machine-learning model works in both general and specific
instances. The local explanation for a given instance is given by
the coefficient values (also known as the LIME values) of the
local linear model. Explanations returned by LIME for 3
randomly selected instances from the test data set are shown in
Figure 7. A positive coefficient means the corresponding
feature has a positive impact, and a negative coefficient means
the corresponding feature has a negative impact. For each of
the instances, the values that all the features take are given on
the right, and the LIME coefficient (importance) values are
given on the left. It can be observed that the feature Rotor
speed has a positive impact on instance “a”, while it has a
negative impact on instances “b” and “c”. The value the feature
Rotor speed takes (11.8) is significantly higher in instance “a”
than the rest of the instances, instances “b” (4) and “c” (2.7).
The impact of continuous phase viscosity is positive
throughout the three instances, but the magnitude is lower
in instance “a”, where the feature takes a lower value (0.87)
compared to instance “b” and instance “c” (1). It could also be
observed that for all the instances, not all the features
contribute toward the black-box model prediction, the
contributions are sparse, and the features with significantly
large LIME values are few.
In the context of the LIME (Local Interpretable Model-

Agnostic Explanations) framework, the identification of a
positive or negative impact of a feature suggests that
introducing slight perturbations (keeping other features
fixed) to its value tends to lead to higher or lower predicted
outcomes by the model, provided that the new data point
remains in close proximity to the original instance. This
observation is a consequence of LIME’s ability to provide a
local linear approximation of the underlying complex model.

Table 1. Evaluation of the Random Forest Regression on
the Test Data Set

Model R2 MAE

Random Forest 0.8831 0.3571

Figure 6. Effect of the kernel width on adherence and stability.
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This observation is different from a feature’s correlation with
the model output. A feature’s correlation with the model
output reflects the general statistical relationship between that
feature and the predicted outcomes across the entire data set.
Correlation measures the strength and direction of the linear
relationship between the feature and the model outcome
independent of other features; it does not capture the local

behavior of the model around a specific instance. It is
important to consider that the impact of slight perturbations
on a feature value of any given instance, whether positive or
negative, depends on the local context, which considers the
values that the other features take for that instance. It is worth
noting that even if two data points have the same value for a
particular feature, they can still be significantly distant from

Figure 7. Local explanations for 3 test instances.
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each other in the feature space. This may be due to the
difference in values taken from the other features. In such
scenarios, a single local surrogate model may not adequately
capture the combined localities of these points. Instead, each
data point will have its own local linear surrogate model, and
the local model coefficients (LIME values) for that particular
feature of these models may differ from each other and can
even have impact in opposite directions.
In order to explain the model behavior globally, a large data

set should be considered. We select the entire available data
set; as the data set is larger from the data distribution, the
better the global understanding of the model. We employ
Algorithm 2 to get the LIME coefficient matrix for the data set.
It contains the LIME values associated with each feature across
all the instances in the data set. While comparing the local
explanation of 3 instances, we observed that there might exist
some interesting patterns of LIME values as the feature takes
different values. The patterns can be well studied by plotting a
LIME value scatterplot for the feature where each individual
point is an instance with the feature value on the x-axis and the

LIME value on the y-axis. Figure 8a shows the LIME value
scatterplot for rotor speed, and Figure 8b shows the scatterplot
for continuous phase viscosity. Rotor speed shows an
increasing trend in the LIME value with respect to the value
of rotor speed in the entire data set. Notably, it is observed that
for examples with lower rotor speed values, the feature’s
influence tends to have a negative impact. Our findings suggest
that as we move toward the region of higher rotor speed values
within the data distribution, the positive influence of rotor
speed on the random forest model prediction strengthens.
On the other hand, when considering continuous phase

viscosity, we note that the positive impact initially increases as
we move toward higher values. However, beyond a certain
threshold, a decline in a positive impact is observed, and in
fact, the feature even exhibits a negative impact within the
region characterized by higher continuous phase viscosity
values.
These observations shed light on the intricate relationships

between the features and model predictions. They suggest that
the influence of the rotor speed becomes increasingly positive

Figure 8. LIME scatterplot for features.

Figure 9. Global feature importance calculated for the random forest model predictions over the entire data set.
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as it approaches higher values within the data distribution.
Meanwhile, the positive impact of continuous phase viscosity
initially strengthens until a critical point, after which it
undergoes a substantial decline, eventually even resulting in a
negative impact within the region marked by higher values.
For calculating global feature importance, we compute the

mean of the absolute LIME values of each feature across the
entire data set. It is done by taking the column-wise mean of
the absolute values from the LIME coefficient matrix. Figure 9
contains the global feature importance for explaining the
random forest model. It shows the overall influence of a
particular feature on the model in order to make predictions.
The feature that is more important will have a greater impact
on the model output. For the drop size data set, the most
influential features for the model are continuous phase
viscosity, rotor speed, and Interfacial tension. These features
could have both positive and negative impacts on model
prediction. The global feature importance plot indicates just
the overall impact, while it may be possible to have examples
where a particular feature impacts the model prediction
positively in some cases and it may impact negatively in others.
The global feature importance values can be used for feature

selection, as well. The relevant features according to LIME
could be identified by referring to the global feature
importance values obtained in Figure 9. Table 2 examines
the random forest model performance after selecting subsets of
the highly influential features according to LIME (selected
from the top of Figure 9).

As seen from Table 2, selecting the top 3 features and
training the random forest model yield a decent R2 of 0.78 over
the test data set. As more features are added, the performance
of the model increases. Selecting the top 7 features according
to the global importance gives the same performance as the
model trained with the entire set of features. The features with
lower feature importance values do not influence the black-box
model prediction by much, and hence, some of them could be
dropped as shown in Figure 10. We can see that the model
trained after removing up to 6 features gives a similar
performance as the model created using all the features.

5.3. Capturing Black-Box Model Feature Interactions.
In section 3.7, we outlined an algorithm that incorporates
second order feature interactions in the local surrogate linear
model. We implemented the algorithm by slightly modifying
the existing LIME Python package. The local model contains
91 features (including all of the second order interactions).
The kernel width was optimized. In Figure 11, the LIME
values for the local model for an instance are shown in the
form of a heatmap. The coefficient values for each of the
original features are represented by the diagonal entries,
whereas the coefficient value for the interaction between
features i and j is represented by the nondiagonal entry (ith
row, jth column). For the given instance, the explanation is

sparse, and the same has been observed in the local
explanations in Figure 7. The features continuous phase
viscosity (CPVisc) and interfacial tension (IT) are two features
with a significant positive impact, and moreover, their
interaction also has a positive impact.
As we have noted in section 3.7, a feature selection step in

the local model is also employed to keep the explanation
compact. In Figure 12, we create a local model by selecting 10
of the 91 features in order to explain an instance. From the
figure it is apparent that the black-box is influenced by the
feature interaction between continuous phase viscosity and
interfacial tension, which are also the two features with the
most impact for the black-box model prediction on the given
instance. Their interaction has a positive contribution toward
the prediction.
The global feature importance (including interactions) could

be calculated just as the way it is done for Figure 9. We take
the mean of absolute LIME values across the entire data set for
each of the features of the local models; it includes the second
order features. This is also shown as a bar plot in Figure 13.
Only the top 9 features (including interactions) out of 91 are
shown in the bar plot. Continuous phase viscosity and
interfacial tension are the two features with the highest overall
importance, which also have a slight interaction impact on the
black-box model (7th best global feature importance). It is
clear from the figure that the interactions between the top
features (ranked 1,2,3) are more significant than the
interactions between lower ranked features.
The top 8 features (including 1 interaction) ranked based on

the global importance are 1. Continuous Phase Viscosity, 2.
Interfacial Tension, 3. Rotor Speed, 4. Continuous Phase
Velocity, 5. Dispersed Phase Velocity, 6. Dispersed Phase
Density, 7. Interfacial Tension - Continuous Phase Viscosity,
and 8. Height of the column. This ranked list clearly indicates
that the black-box model is able to capture some feature
interactions (seventh). We could also use the global
importance for further feature engineering. The random forest
model is influenced by the feature interaction between
interfacial tension and Continuous phase viscosity. It may be
useful to add a second order interaction feature between the
two to the data set, as it may help to uncover more complex
relationships involving these features.36 We trained the random
forest model on the train data set with the 1. Top 6 individual

Table 2. Evaluation of the Random Forest Regression on
the Test Data Set with Feature Selection

Features selected R2 MAE

3 0.785 0.479
5 0.770 0.480
6 0.811 0.424
7 0.881 0.365
All 0.882 0.361

Figure 10. Impact on the model performance by removing the
features with the lowest global importance one by one.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c00808
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

L

https://pubs.acs.org/doi/10.1021/acs.iecr.3c00808?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c00808?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c00808?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c00808?fig=fig10&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c00808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


features (from the above list), 2. Top 7 features (including a
second order interaction term), and 3. Top 8 features
including second order interaction terms. Then we evaluated
the models on the test data set.
From Table 3, it is clear that featuring second order

interaction terms in the model did not improve the predictions
on the test data set. However, it could be useful in general, and
if inclusion of second order features is desired, an initial
understanding of the feature interaction effect on the black-box
model may be useful.

6. CONCLUSIONS
The estimation of the drop size in a rotating disc contactor is
crucial for the effective design and operation of the contactor.

In this study, we have shown that the random forest model
achieves high accuracy in predicting the drop size on our data
set, with an R2 score of 0.881 and a mean absolute error
(MAE) of 0.3571. To ensure that the model is explainable and
interpretable, we implemented LIME, a tool that provides
explanations for the random forest model predictions on the
local and global levels. At the local level, the utilization of bar
plots with LIME values offers a valuable visual explanation to
clarify the black-box model’s predictions for specific instances.
This visualization provides essential information by quantifying
the relative contributions of different features toward the black-
box model’s prediction for each instance. On the global level,
the analysis of global feature importance plots has yielded a
comprehensive list of informative attribute subsets. Notably,

Figure 11. Local explanation with feature interaction.

Figure 12. Local explanation with feature interaction with 10 features (including interaction terms) selected.
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when considering only the top 7 features identified by LIME
global analysis in Figure 9, we observe a comparable
performance to that of the original model (0.8831 R2 score
and 0.365 MAE). To delve deeper into the contributions of
pairwise feature interactions on the random forest model’s
predictions for individual instances, we have incorporated
second order feature interaction terms into the local surrogate
model. This inclusion allows us to better comprehend the
influence of these pairwise interactions. The revised list of top
8 informative attributes, as identified in Figure 13, also
encompasses pairwise feature interactions, such as “Interfacial
Tension - Continuous Phase Viscosity” and “Rotor Speed -
Continuous Phase Viscosity”. This discovery further reinforces
the significance of these pairwise interactions in influencing the
random forest model’s predictions. Furthermore, we explicitly
engineered second order interaction feature terms based on the
top 8 features identified earlier. Interestingly, this approach
achieved a level of performance similar to that of the original
model, with an R2 score of 0.88 and an MAE of 0.35. These
results suggest that the random forest model is sufficiently
capable of capturing such feature interactions, rendering the
explicit addition of second order interaction features
unnecessary for achieving further improvement. By demon-
strating that the random forest model maintains its accuracy
when trained on a smaller subset of features, we enhance our
understanding of the relationship between the drop size and
the relevant features. This analysis allows us to identify and
discard irrelevant features that do not significantly contribute
to the model’s predictive performance. In conclusion, the use
of a random forest model and the LIME can be useful in the
design and optimization of rotating disc contactors.
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■ ABBREVIATIONS
AARE Average Absolute Relative Error
CSI Coefficients Stability Index
LIME Local Interpretable Model-Agnostic Explanations
MAE Mean Absolute Error
RDC Rotating Disc Contactor
RF Random Forest
SHAP SHapley Additive exPlanations
VSI Variables Stability Index
XAI eXplainable Artificial Intelligence

NOMENCLATURE
D Euclidean distance
DC Column diameter, m
dr Rotor diameter, m
ds Stator diameter, m
fb Black-box model
fl Local surrogate model
g Acceleration due to gravity, m/s2
H Column height, m
hc Compartment height, m
k Kernel width
N Rotor speed, rps
si ith instance in the neighborhood S around x
S Generated neighborhood around instance x
Vc Velocity of the continuous phase, m/s
Vd Velocity of the dispersed phase, m/s
x Instance to be explained

Greek symbols
μc Viscosity of the continuous phase, Pa·s
μd Viscosity of the dispersed phase, Pa·s
ρc Density of the continuous phase, kg/m3

ρd Density of the dispersed phase, kg/m3

σ Interfacial tension, N/m
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